Solving equations like $2 \sin x + \sqrt{3} = 0$

MAT 170 – David Smith

Wednesday, 26 October, 2005

We wish to find all solutions\(^1\) to the equation:

$$\sin x = -\frac{\sqrt{3}}{2} \tag{1}$$

Of course this means finding all real numbers x which make the equation true. Since \sin is periodic, it suffices to find solutions in a “large enough” restricted domain, then “extend” the solutions to the rest of the real number line. Since \sin has period 2π, a reasonable restricted domain is the interval $[0, 2\pi]$. Other possible choices are $[-\pi, \pi]$ or $(-7.77, -7.77 + 2\pi)$. The domain should be an interval of length equal to the period of the function in question (2π in this example), with the interval containing at least one of its endpoints.

The solutions of (1) on the domain $[0, 2\pi]$ are:

$$x = \frac{4\pi}{3}, \frac{5\pi}{3} \tag{2}$$

These solutions are obtained by recognizing $\frac{\sqrt{3}}{2}$ to be the length of a leg of one of our “special right triangles”, the one with internal angles $\frac{\pi}{6}, \frac{\pi}{3},$ and $\frac{\pi}{2}$. Note that these two solutions correspond to angles with terminal rays in quadrants III and IV, respectively.

Now we “extend” the solutions in (2). Since $4\pi/3$ is a solution of (1), all of

\(^1\) (rather than solutions on a restricted domain such as $[0, 2\pi]$)
the following must be solutions of (1) (by the periodicity of sin):

\[
\begin{align*}
4\pi/3 & \quad - \quad 6\pi \\
4\pi/3 & \quad - \quad 4\pi \\
4\pi/3 & \quad - \quad 2\pi \\
4\pi/3 & \\
4\pi/3 & \quad + \quad 2\pi \\
4\pi/3 & \quad + \quad 4\pi \\
4\pi/3 & \quad + \quad 6\pi \\
\vdots
\end{align*}
\]

Mathematical shorthand for this collection is \(\frac{4\pi}{3} + 2k\pi \), where \(k \) is any integer. We conclude that all solutions to (1) are given by \(\frac{4\pi}{3} + 2k\pi \) and \(\frac{5\pi}{3} + 2k\pi \), where \(k \) is any integer.